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Abstract—Hyperspectral image (HSI) feature extraction plays
a crucial role in reducing the redundancy and correlation
among spectral bands while preserving the essential information.
Knowledge-driven feature extraction methods, such as spectral
indices (SIs), leverage the interaction mechanisms between elec-
tromagnetic waves and materials to enhance the characteristic
attributes of ground objects through band operations. These
methods offer key advantages, including strong physical inter-
pretability, simple construction, and robust scene reusability.
However, most of the existing SIs still rely on expert knowledge
tailored to specific scenarios, leading to inherent limitations,
such as subjectivity, high time consumption, and implementation
complexity. In this article, to address these challenges, we propose
a HSI multi-agent deep reinforcement learning (MADRL) feature
extraction (HI-MAFE) algorithm, aiming to alleviate the burden
of manual SIs design by human experts. HI-MAFE employs a
heuristic “generation-selection” strategy to simulate the decision-
making process of domain experts, with specifically designed deep
reinforcement learning (DRL) models for both the generation and
selection steps. To accelerate exploration in a high-dimensional
action space, the model incorporates a MADRL framework.
The experimental results demonstrate the effectiveness and supe-
riority of the proposed algorithm for HSI classification. The
proposed HI-MAFE framework leverages DRL to autonomously
generate meaningful environmental interpretation from spectral
data, thereby reducing the reliance on manually designed SIs.
This research can inspire future work in SIs construction and
complement the limitations of data-driven approaches.

Index Terms—Automatic feature engineering, hyperspec-
tral remote sensing, multi-agent deep reinforcement learning
(MADRL), spectral indices (SIs).
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I. INTRODUCTION

INCE the 20th century, hyperspectral remote sensing tech-
S nology has emerged as a transformative advancement in
remote sensing science, distinguished by its ability to capture
hundreds of continuous spectral bands for each image pixel
[1], [2]. This capability delivers highly detailed spectral infor-
mation, enabling the widespread adoption of the technology
in various domains such as mineral identification, precision
agriculture, military reconnaissance, and soil property esti-
mation [3], [4], [5], [6]. Despite its strengths, hyperspectral
remote sensing faces challenges due to the high dimensionality
of the data. The redundancy and correlation among spectral
bands can trigger the “Hughes” phenomenon [7]. To address
this issue, dimensionality reduction processing is essential.
By reducing the feature space while preserving the critical
information, dimensionality reduction techniques can ensure
the effective analysis of hyperspectral imagery [8].

Dimensionality reduction in hyperspectral remote sensing
imagery is typically achieved through two primary approaches:
feature selection and feature extraction [9]. Feature selection
involves identifying and retaining the most relevant spectral
bands while eliminating those deemed less informative [10],
[11], [12], [13], [14], [15]. Although these methods success-
fully preserve the physical properties of the original bands,
they often fail to account for the complex spectral interactions,
leading to potential information loss in feature representation.

In contrast, feature extraction employs mathematical trans-
formations to project high-dimensional data into a lower-
dimensional space, generating a new set of features. Unlike
feature selection, which eliminates specific bands, the goal
of feature extraction is to summarize the information while
suppressing the less relevant information. Traditional feature
extraction techniques, such as principal component analysis
(PCAs) [16], linear discriminant analysis (LDAs) [17], and
tensor robust PCAs (TRPCAs) [18] are widely employed for
this purpose. However, a key limitation of these methods is
their inability to retain the physical meaning of the original
features, potentially disrupting their inherent structure during
the transformation process.

In recent years, with the exponential increases in computa-
tional power, artificial intelligence (AI) has emerged as one of
the most important and disruptive technologies. Deep learn-
ing leverages multilayer nonlinear transformation networks to
autonomously extract higher-order abstract features, offering
an innovative solution for hyperspectral feature extraction [19],
[20], [21]. Despite the proliferation of task-specific intelligent
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interpretation algorithms that have made progress in particular
application scenarios, deep feature extraction still faces several
challenges, as shown in Fig. 1(a).

1) Lack of Interpretability [22]: the existing deep learning
models often function as “closed boxes,” making it
difficult to link the extracted high-level abstract features
to the underlying physical mechanisms.

2) Limited Scene Reusability [23]: deep learning models
exhibit weak transferability across spatial domains, land-
cover types, temporal phases, spatial resolutions, and
data modalities. As a result, different tasks often require
the development of scene-specific interpretation models.

3) Rely on Complex Architectures: feature extraction typ-
ically relies on complex deep learning architectures,
designing, optimizing, and fine-tuning these intricate
architectures often requires extensive experimentation,
increasing the development time and effort.

Compared to the aforementioned feature extraction meth-
ods, spectral indices (SIs), which are also known as
knowledge-based feature extraction, emphasize the attributes
of objects through operations such as band ratios, based on
the interaction mechanisms between electromagnetic waves
and materials. Currently, hundreds of divers SIs have been
proposed for various application fields, including agricultural
management [24], fire detection [25], urban planning [26],
and ecological environment assessment [27], with this number
continually increasing. To address the growing diversity and
demand for standardized SIs, the “awesome SIs” (ASI) project
provides a machine-readable, extensible catalog linked to a
Python library, which enables efficient and consistent appli-
cation of SIs in Earth system research [28]. Among these
SIs, the most renowned and widely used spectral index is the
normalized difference vegetation index (NDVI) [29], which is
typically employed to assess the greenness of vegetation both
spatially and temporally. Other commonly used SIs include the
leaf area index (LAI) [30] and the remote sensing ecological
index (RSEI) [31]. SIs offer several advantages, as shown in
Fig. 1(b).

1) Strong Physical Interpretability [8]: the design of SIs is
typically based on the physical relationships between the
spectral absorption of surface features and biochemical
parameters.

Robust Scene Reusability [32]: SIs rely only on opera-
tions involving specific spectral bands, without the need
for complex model training or large amounts of labeled
data, which enhance their applicability across different
scenarios.

Simplicity In Construction [32]: Sls are character-
ized by their simplicity in construction, typically
involving straightforward arithmetic operations between
reflectance values of a few specific spectral bands. This
inherent simplicity makes them easy to understand,
calculate, and implement across various platforms, mak-
ing SIs valuable for rapid applications. At present, the
complementarity and the necessity for synergistic appli-
cation between knowledge and data in remote sensing
image interpretation have become increasingly evident.

2)

3)
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Yan et al. [33] developed a self-supervised learn-
ing method that incorporates remote sensing indices
for unsupervised change detection, which significantly
enhanced detection accuracy. Tian et al. [34] pro-
posed a knowledge-guided deep learning framework that
integrates knowledge and neural networks from both
feature-level and network-level perspectives, resulting
in substantial improvement in wheat yield estimation
accuracy.

Although SIs possess the aforementioned advantages, most
of the existing SIs still rely on expert judgment tailored to
specific scenarios, rendering them highly subjective, time-
consuming, and challenging to implement, etc. In recent years,
automated feature extraction (AutoFE) methods, which can
automatically generate effective features without human inter-
vention, have been widely adopted in the processing of tabular
data (also known as structured data). AutoFE formalizes
feature construction as the application of transformations to the
original features, with the objective of enhancing the perfor-
mance of the predictive model by extracting new, informative
features from the base data. Numerous automated feature gen-
eration methods have been proposed for feature engineering
in tabular datasets. For example, Chen et al. [35] introduced a
neural architecture for automated feature engineering, termed
neural feature search (NFS). In NFS, multiple recurrent neural
networks (RNNs) serve as controllers to generate transforma-
tion rules for the corresponding original features. Li et al.
[36] presented feature set data-driven search (FETCH), which
incorporates deep reinforcement learning (DRL) into AutoFE
by updating the policy function using reinforcement learning
techniques. However, FETCH employs a single-agent DRL
framework, wherein one agent is responsible for determining
the transformation rules for all the features. More recently,
Zhang et al. [37] introduced an “expansion—reduction” frame-
work for feature generation. In the expansion phase, various
transformations are applied to the raw features to generate
a larger set of candidate features; in the reduction phase,
features deemed irrelevant or redundant are pruned. Liu et
al. [38] proposed a visible-hidden hybrid automatic feature
engineering (VHAFE) to take into account the interactions of
features in the evolution process.

In this article, to address the aforementioned challenges,
a novel AutoFE method named HI-MAFE is proposed to
automatically design physically meaningful feature sets in
conjunction with the specific scene requirements, thereby
reducing the dependence on expert experience. HI-MAFE
employs a “generation-selection” heuristic strategy to simu-
late the decision-making process of human experts. Separate
Markov decision process (MDP) models are designed for the
generation and selection steps. In the generation step, the
feature generation task is formalized as a fully cooperative
multi-agent DRL (MADRL) problem. Specifically, N agents
are constructed, each responsible for generating features from
different spectral bands to map the input raw features into
a set of candidate features. In the selection step, a feature
selection strategy is devised; through iterative screening of the
candidate feature set, the optimal feature subset is determined.
In addition, the proximal policy optimization (PPO) algorithm
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and the asynchronous advantage actor-critic (A3C) algorithm
are designed to maximize the expected cumulative reward of
the MDP, thereby iteratively optimizing the feature extraction
strategy. Finally, spatial features are incorporated to further
improve the performance of the hyperspectral remote sensing
information processing. The main contributions of this article
are summarized as follows.

1) A hyperspectral image (HSI) automatic feature extrac-
tion method based on MADRL is proposed, aiming to
alleviate the burden of manual SI design by human
experts.

2) A heuristic “generation-selection” strategy is employed
to mimic the decision-making process of human experts
and design specialized DRL frameworks tailored to both
the feature generation and selection steps. HI-MAFE
incorporates a multi-agent DRL algorithm to accelerate
the exploration process in a high-dimensional action
space.

3) The experimental results demonstrate that the proposed
method outperforms the state-of-the-art feature selection
and AutoFE approaches in both feature extraction effi-
ciency and performance.

II. BACKGROUND OF DRL

The objective of DRL is to train an agent on how to act in
complex, uncertain environmental states, with the aim of max-
imizing the expected cumulative reward [39]. A reinforcement
learning task can be conceptualized as an MDP, which can be
expressed as a tuple (S, A, R, P, and 7). At time step ¢, the
environment is assumed to be in state s; € S, where S is the
state space. After the agent observes state s;, it chooses an
action a, € A according to its policy m, where A is an optional
action space, and the policy 7 : S — p(A = alS) is a mapping
from the state to a probability distribution over actions. The
environment outputs the new state s, ~ P(:|s;,a,) according
to the state transition probability function P: S x A — A(S)
and returns a scalar reward value r(s;,a;, s,+1) € R, where R
depicts the distribution of the immediate reward for the chosen
action. v € [0,1] is a discount factor, where lower values
place more emphasis on immediate rewards. In the case of an
MDP, the goal of the agent is to identify the optimal policy
m: S — A, a mapping of the state space S to the action
space A, that maximizes the long-term cumulative discounted
rewards [40]

J =B, | 2V (snasi)lag =nCls) | (D)
1=0
Based on the DRL optimization objective defined by the
above formula, under a given policy , the value function V”(s)
can be formally defined. Its mathematical expression can be
given as follows:

V() =Ex | Y Yr(snans)la~aCls).so=s|. 2
t=0

Given action a, the Q value can be defined as

Q" (5.a) = Ex | Y _y'r (500 5141) las ~ (-] 57)

t=0
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S0 =S,a0 =d]. 3)

Given the state transition probability distribution
p(siyi1ls;,a;) and the reward matrix (s, a;), based on
the Bellman equation [41], the following equation holds for
all states s, at any time step ¢ :

Vi)=Y mds) ) p(sIsna)[r(sna)+y" (s)]
acA(s,) s'eS
“4)

where s’ represents the successor state of s. By selecting
actions that maximize the reward, the optimal state and optimal
policy can be obtained

VE (s,) = max Zp (s’ | s, a) [r (siya) + V" (s')]. 5)

Similarly, the Q value for each state—action pair can be
computed using the following equation:

Qﬂ* (s, ar) = ZP (S’ | s, ar) [r (s, ar) + ﬁaxQ"* (S/’ al)]~
s’ (6)

By directly learning QO (s;,a;), the optimal policy n* can
be obtained. This class of methods is commonly referred to as
value-based approaches. However, in real-world scenarios, the
state transition probability p(s’|s;,a,) is typically unknown.
To address this issue, a common practice is to learn state
values or Q-values through sampling, where the agent collects
the state, action, and reward samples by interacting with the
environment. Nevertheless, this approach struggles to handle
tasks with extremely large state and action spaces. Leveraging
a deep neural network allows for a better approximation of the
optimal state—action function, enabling more effective learning
and generalization in high-dimensional state spaces. Given a
deep neural network, the objective of the DRL algorithm can
be reformulated as follows:

J(0) = Bawry 1955, ) Y7 (s1,030). (7)
t=0

In policy-based methods, the agent directly learns a policy
to determine the probability of selecting an action given a
state. Both the value-based and policy-based methods rely on
sampling-based learning to optimize the parameter 6, in order
to maximize the objective function J(6).

In MADRL, a system can be represented by a six-tuple
(N,S,A,R, P, and y), where N denotes the number of agents,
S represents the state space, and A = {Ay,..., Ay} is the set of
action spaces for all the agents. P denotes the state transition
function, R is the reward function, and O = {Oy,...,Oy}
represents the observation spaces of all the agents. @ denotes
the joint action vector of all the agents, and a—i denotes the set
of actions taken by all the agents except agent i. In addition,
T represents the observation—action history of agent i, while
7 refers to the observation—action histories of all the agents.
Furthermore, T, S, and A denote the observation—action space,
the state space, and the action space, respectively. In a fully
observable cooperative multi-agent environment, each agent
i observes the global state s, at time step ¢ and takes an
action g according to its local stochastic policy ;. The agent
then receives a reward ri. In a fully cooperative setting, all
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Fig. 1. Illustration of the inherent issues arising from deep learning methods and Sls. (a) Deep learning methods. (b) Spectral indices.

the agents share the same reward at each time step, that is,
ri = --- =l = r". However, if the global state is not fully
observable, each agent can only access its local observation.

If agents are homogeneous, parameter sharing can enable
more efficient training of their policies. In parameter-sharing
training, all the agents can simultaneously leverage the expe-
riences of the other agents, allowing them to learn diverse
behaviors.

Taking the policy gradient version of single-agent-based
trust region policy optimization (TRPO) with parameter
sharing as an example, during the iterative process of the
algorithm, decentralized policies are used to sample trajec-
tories from each agent, and advantage values are computed to
maximize the following objective:

mg (alo,m)

L (6) = Eo~pgk a~Tg, |: A9k (0’ m, a)] . (8)

g (alo,m)

In this equation, m represents the agent index, and the opti-
mization results are utilized to compute the policy parameter
updates.

III. PROPOSED METHOD

HI-MAFE employs a heuristic strategy of “generation-
selection.” An overview of the proposed HI-MAFE framework
is provided in Fig. 2. Let D be a hyperspectral dataset,
represented as D = (X,Y), where X = {x1,x,...,x4},X €
R"4 is a matrix of original hyperspectral data, with n rows
(instances) and d columns (features), and Y is a vector of
the corresponding label values. The action sets A, and Aj
represent the sets of actions for the generation and selection
steps, respectively. Given a classification algorithm L with
fixed hyperparameters and a cross-validation metric E, in the
generation step, the objective of HI-MAFE is as illustrated
in (9). Each original feature is associated with an agent that
interacts with the environment iteratively. Each agent applies

transformations based on the policy network to generate a
new set of candidate features, which are subsequently input
into the evaluation model. The evaluation model assesses these
features and computes corresponding rewards, which are then
relayed back to the agents for updating the policy network.
This process is repeated iteratively until either a predefined
threshold is reached or convergence is achieved

Ag = 3"E (L (A (X0, Y)). ©)

In the selection step, the objective of HI-MAFE is illustrated
in (10). The feature selection task is modeled as a sequential
decision-making problem, where the agent determines which
feature to select at each time step until an optimal subset of
features is identified

Ay =3"E (L(As (A (X)), Y)). (10)

A. Generation Step

In the generation step, each agent focuses solely on explor-
ing the optimal transformation rules for its corresponding
original feature, effectively addressing the issue of feature
explosion. Specifically, the multi-agent feature extraction DRL
is further modeled as an MDP, which includes agents, action
space, state, state transition, and reward.

1) Agents: Compared with structured data, hyperspectral
data are characterized by high dimensionality and strong
redundancy. During the feature generation process in
high-dimensional data, the number of features increases
exponentially with the feature order, resulting in a rapid
expansion of the feature space, which leads to reduced
computational efficiency and greater difficulty in model
training; therefore, traditional methods are prone to the
problem of feature explosion. To address this issue,
HI-MAFE introduces a multi-agent feature extraction
mechanism. Each original feature is associated with an
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Fig. 2. Overview of the HI-MAFE framework. In the selection step, white indicates unselected features and pink indicates selected features.

individual agent, with the total number of agents equal
to the total number of spectral features. All agents share
a single policy network, which guides the agents’ actions
based on the designed policy framework.

2) Action Space: In HI-MAFE, operator transformations
are employed to generate new features. Based on the
number of features involved, operators are categorized
as unary operators (logarithm, square, square root, and
reciprocal) and binary operators (addition, subtraction,
multiplication, and division). In addition, the action set
also includes the option of taking no action on the
features. Let the number of original features be ng, the
number of binary operators be npinary, the number of
unary operators be Mypay, and the maximum number of
steps be K. The size of the feature space at time step
t(1 <t < K) can be recursively expressed as

ny =N (nt—l * Mbinary + Munary + 1) . (11

Under a single-agent architecture, the feature space 3)
grows exponentially with increasing feature order.
A single agent must explore all potential features

combinations simultaneously, resulting in high explo-
ration costs. To mitigate this “feature explosion”
problem, we incorporate an efficient search strategy
such that each original feature explores only its most
promising transformation rules. More specifically, we
allocate an independent agent to each original feature,
enabling multiple agents to learn their respective opti-
mal transformation strategies in parallel. This ensures
adequate exploration of the discriminative feature space.
Under this mechanism, the exploration space of each
agent can be simplified as

My = Ny—1 * Nbinary + Munary + L. (12)

HI-MAFE can add other operators, depending on spe-
cific application requirements. The actions taken by all
the agents at time step ¢ can be represented as

A, = {al,,, . ,an,t}. (13)

State: At time step t, X, = {xi,...,X,,} denotes the
set of features generated by all the agents, where
Xiy = aj;—1(x;,—1) represents the new feature generated
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Fig. 3. Architecture of the generation step.

by applying the action a;,-; to the original feature
xi;—1. Each agent has access to the observations and
action information of all the other agents. To ensure that
the agents can learn distinct policies, an agent-specific
indicator signal is added to the states, which is called
“agent indication.” The state of agent n; at time step ¢
is represented as

sie = {Xn Y, x;, ) (14)

4) State Transition: After all the agents take an action, the
state will be updated based on the collective actions
taken.

Reward: The average performance from k-fold cross-
validation is utilized as the reward. To ensure training
stability, the model is penalized based on suboptimal
results, as defined by the reward function in (15) [36],
where E, represents the average result from the k-fold
cross-validation at time step ¢, and E;; represents the
evaluation result from the kth fold at step z. In the fully
cooperative multi-agent reinforcement learning setting,
the reward is evenly distributed among all the agents

5)

R; = Et + Et,diff

E, g = Z min (0, E — Eiy).
k

In hyperspectral datasets containing hundreds of features, the
dimensionality of the action space significantly affects the
learning efficiency, leading to instability during model training
and poor convergence. PPO is a robust reinforcement learning
algorithm that ensures stable training in complex environ-
ments with large action spaces, and has been successfully

15)
(16)

applied in various domains for training reinforcement learning
agents [42]. In the proposed framework, the PPO algorithm is
employed for the feature generation task. This approach allows
the framework to sample multiple action plans in each epoch,
which is then allocated to multiple threads for evaluation.
Subsequently, the policy gradient is computed to update the
network, thereby reducing the sample complexity. The PPO
objective function can be mathematically expressed as follows
[42]:

LM () = E, [min (r, @) A, clip (), 1 —€,1 + &) A)) ]

a7
where r(0) = (mg(alsy))/(ma,,(arls;)) represents the probabil-
ity ratio of the new policy my to the old policy mg,. The
term A, denotes the estimated advantage at time ¢, which
indicates how much better the action taken is, compared to
the average action. The clipping mechanism, governed by the
hyperparameter €, serves to limit the degree of policy updates,
thereby preventing excessive changes that could destabilize the
learning.

Moreover, a policy network is designed to guide the agents
in action selection, as illustrated in Fig. 3. All the agents are
enabled to share a common policy network, which effectively
reduces the computational burden and memory requirements.
This approach minimizes the complexity associated with
maintaining individual policy networks for each agent, while
simultaneously enhancing the coordination and cooperation
among the agents. Leveraging a shared policy network yields
a more cohesive learning process, enabling the agents to better
align their actions in pursuit of collective objectives. The
policy network comprises the following key components: 1) a
layer normalization layer to stabilize the training of the neural
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network; 2) a dimensionality reduction block that reduces the
feature vector to a fixed length, enabling the network to handle
varying sizes of feature sets while decreasing the network
complexity; 3) a transformer block that learns the complex
relationships among the different features; and 4) an operation
block followed by a softmax layer that maps the relevant
information of features to corresponding action probabilities.

Algorithm 1 Generation Step

Input: Raw feature set Xy = {x1,...,Xs0}, policy network n,
metric E, preselected machine learning model L, label Y
Parameter: Total epochs N, maximum steps K, number
of workers W

Output: Action A and new feature set X

1: while epoch e € [0, N] do
2 while worker index w € [0, W] do
3 while step 7 € [0, k] do

4 X=X

5

6

Update S, = {s1,...,Sn,) via (14).
Perform actions A, = {ai, ..., a,,} according to the

policy m(A,|S )

7: X1 = {al,t(-xl,f)s cee an,t(xn,t)}
8: Evaluate X, by E(L(X/41,Y))
: t=t+1
10: end while
11: w=w+1
12: end while
13: Calculate the reward R via (15)
14: Carry out a gradient descent step via (17)
15: Update the policy network m
16: e=e+1

17: end while

The overall training algorithm of the generation step is
described in Algorithm 1.

B. Selection Step

After the generation step, a new set of candidate features
X = {&,...,%,) is obtained. The objective of the selection
step is to further identify the most effective features from
this candidate set, shifting the model’s focus from “diversity
exploration” to “optimal decision-making.” The selection step
can be conceptualized as a sequential decision-making prob-
lem for an agent, where the agent must determine which
features to select at different time steps until an optimal feature
combination is identified. This problem is formulated as an
MDP, encompassing the action space, state, state transition,
and reward.

1) Action Space: In our case, the action of the agent is
to choose a feature at each time step. The policy of
the agent determines which feature to choose. The size
of the agent’s action space equals to the number of
candidate features.

2) State: S, = {si,...,s,} represents the current feature
selection state at time step 7, where s; = {0, 1},1 <i < n.
s; = 1 indicates that the ith feature has been selected,
while s; = 0 represents that it has not been selected.
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Algorithm 2 Selection Step

Input: Raw feature set X, metric E, pre-selected machine
learning model L, label Y
Parameter: Total epochs N, maximum number of features
M, number of parallel environments W
Output: new feature set X
1: Initialize all the parameters 8 of the global network
2: for w=1to W do
3: Initialize the parameters 6,, of the w-th local network
4. end for
5. Perform the following steps asynchronously for all local
networks, taking the w-th local network as an example
6: while epoch e € [0, N] do
7 0,, = 6, initialize S
8 while ¢ € [0, M] do
9 Perform action a according to the policy network

10: Calculate S,4; via (18).
11: Calculate the reward r; via (19).
12 end while

13: 0=0,,R=ry
14: for i e [M —1,0] do

15: R« ri+vyR

16: Accumulate gradients of 6/: db, < df, +
Vo logn(ails;; 0,)(R = V(si; 6,))

17: Accumulate gradients of 6: df, < df, +
AR - V(s;:0))°/8,

18: end for

19: Perform asynchronous update of 6

20: end while

3) State Transition: At time step ¢, assuming that the agent
selects the ith feature, donated as a; = i, if the ith feature
has not been selected, the next state will be updated.
Otherwise, the state remains unchanged. If the maximum
number of selectable features has been reached, the
action terminates. The state transition function is defined

as follows:
St9 if Sar = l
Sit1=38+a, if 55, =0 (18)
Terminal, if sum(S;) = featurenum.

4) Reward: At time step ¢, the number of selected features
reaches the maximum limit, resulting in a new feature
set X. The chosen subset of features is evaluated using k-
fold cross-validation. To prevent the agents from falling
into a cycle of repetitive selections, a penalty factor «
and a reward factor § are incorporated into the reward
function. The reward function is defined as follows:

a, if 54, =1
rr=14p, if 5, =0
-(E(X)-E (X)), if sum(S,) = featurenum.

19)

In the selection step, the A3C algorithm is used to solve the
feature selection problem. One of the core strengths of A3C is
its asynchronous architecture, which allows multiple workers
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Fig. 4. Architecture of the selection step.

to explore the environment simultaneously. This parallelism
accelerates the learning process. The actor updates this policy
based on the feedback received from the critic. The critic’s
role is to minimize the mean squared error between the pre-
dicted value and the actual return. A3C utilizes an advantage
function, which can be defined as

A(s,a) = Q(s,a)—V(s) (20)

where Q(s,a) is the action—value function representing the
expected return for taking action a in state s.

The gradient of the objective function for the policy network
can be updated as follows:

T

VJ(6) = Erz, |:Z Vlogr (a|s1;6)A; (Sr,az)i| . (21

t=0

The selection step consists of a stem network, an actor
network, and a critic network, as shown in Fig. 4. The
architectures of the networks are all 1-D fully connected
networks.

The overall training algorithm of the selection step is
described in Algorithm 2.

C. Spatial Feature Extraction

Compared with structured data, another challenge of hyper-
spectral data is that it contains both spatial and spectral
information. Relying solely on spectral information often
proves insufficient for achieving an optimal classification accu-
racy. To enhance the classification results, spatial information
is integrated with spectral information.

Mathematical morphology is one of the widely utilized
techniques for extracting spatial features [43]. Given an input
image X and a structuring element B, the mathematical for-
mulation of erosion is defined as shown in (22). © denotes the
erosion operation

EX)=XoB={d(B); cX}. (22)
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The dilation operation can be mathematically expressed as
shown in (23). & denotes the dilation operation

EX)=XoB={z(B);NX+0}. (23)

Opening combines erosion followed by dilation. The open-
ing operation is defined as

OX)=(XeBaB. (24)

Closing involves dilation followed by erosion. The closing
operation is defined as

O(X)=(X®B)oB. 25)

The gray-level co-occurrence matrix (GLCM) is one of
the most widely used techniques for computing second-order
texture measures. The definitions of some of the important
features extracted from the GLCM are provided in Table I.

IV. EXPERIMENTAL RESULTS AND ANALYSIS

In this section, the experimental results obtained on three
public HSI datasets are presented to validate the effectiveness
of the proposed method. In Section IV-A, the three HSI
datasets are introduced. Sections IV-B and IV-C describe the
experimental setup and the classification results, respectively.
Sections IV-D-IV-F discuss the final extracted spectral fea-
tures, the sensitivity to the number of selected features, and the
algorithm’s efficiency, respectively. Finally, in Section IV-G,
the ablation studies performed to verify the contribution of
the different components in the HI-MAFE framework are
described.

A. Data Description

In the experiments, we utilized three HSI datasets: Pavia
University, Houston 2013, and QingPu. A detailed description
of each dataset is provided below.

1) Pavia University: The Pavia University dataset was

captured by the reflective optics system imaging spec-
trometer (ROSIS) over the University of Pavia in
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TABLE I
DEFINITIONS OF THE FEATURES EXTRACTED FROM THE GLCM

GLCM feature Formula
Mean u= z Zl P, ))
Variance Z Z P@,j) - (i — p)?
, _PGH

Homogeneity 1+ (i ])2

Contrast z Z(l - )? P, ))
i j

Dissimilarity Z Z [t =Jjl-P(@J)

Entropy ZZ P(i,j) - logP(i,))

Second moment

ZZP@ i
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0,0;

Correlation
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TABLE III

DETAILED CLASSES AND NUMBERS OF THE TRAINING AND TEST SAM-

PLES ON THE HOUSTON 2013 DATASET

Class Class name Training Testing Total
C1 Healthy grass 138 1236 1374
C2 Stressed grass 145 1309 1454
C3 Synthetic grass 80 715 795
C4 Tress 126 1138 1264
Cs Soil 130 1168 1298
C6 Water 34 305 339
C7 Residential 148 1328 1476
C8 Commercial 135 1219 1354
C9 Road 155 1399 1554

C10 Highway 142 1282 1424

Cl1 Railway 157 1409 1566

C12 Parking Lot 1 143 1286 1429

C13 Parking Lot 2 63 569 632

Cl4 Tennis Court 51 462 513

CI15 Running Track 80 718 798
Total 1727 15543 17270

TABLE IV

DETAILED CLASSES AND NUMBERS OF THE TRAINING AND TEST SAM-

PLES ON THE QINGPU DATASET

TABLE 11

DETAILED CLASSES AND NUMBERS OF THE TRAINING AND TEST SAM-

PLES ON THE PAVIA UNIVERSITY DATASET

Class Class name Training Testing  Total
Cl Asphalt 332 6299 6631
C2 Meadows 933 17716 18649
C3 Gravel 105 1994 2099
c4 Trees 153 2911 3064
C5  Painted metal sheets 67 1278 1345
Co6 Bare Soil 251 4778 5029
Cc7 Bitumen 67 1263 1330
C8  Self-Blocking Bricks 184 3498 3682
C9 Shadows 47 900 947

Total 2139 40637 42776

northern Italy. After removing 12 noisy bands, the
dataset consists of 610 x 340 pixels and 103 spectral
bands, covering a wavelength range of 430-860 nm. The
spatial resolution is 1.3 m per pixel. The dataset includes
nine land-cover classes. In this study, 5% of the labeled
samples were randomly selected as training data. The
number of samples are listed in Table II.

2) Houston 2013: This dataset were initially utilized in the
2013 IEEE GRSS Data Fusion Contest. It consists of
349 x 1905 pixels and comprises 144 spectral bands,
covering a wavelength range from 380 to 1050 nm.
The data include a total of 15 classes. To facilitate
the training and testing process, 10% of the labeled
samples were randomly selected for use as training data,
while the remaining samples were reserved for testing
purposes. The number of samples are listed in Table III.
3) QingPu: The QingPu dataset is a representative subset
selected from The QingPu-HSI dataset [44], acquired
on June 16, 2022, by the airborne multimodality imag-
ing spectrometer (AMMIS) developed by the Shanghai
Institute of Technical Physics at the Chinese Academy

Class Class name Training Testing  Total
Cl Asphalt road 162 7937 8099
C2 Greenhouse 29 1431 1460
C3 Cement road 51 2497 2548
C4 Farmland 536 26270 26806
C5 Water 490 24019 24509
C6 Bulrush 37 1819 1856
C7 Ligustrum 248 12143 12391
C8  Elaeocarpus sylvestris 112 5467 5579
C9  Camptotheca acuminata 300 14687 14987
C10 Goldenrain tree 166 8140 8306
Cl1 Camphor tree 247 12090 12337
Total 2378 116500 118878

of Sciences, Beijing, China. The dataset consists of
396 x 1448 pixels with 256 spectral bands, covering a
wavelength range of 400-1000 nm. After removing five
defective bands, 251 spectral bands remained available
for analysis. Prior to analysis, the dataset was pre-
processed through dark current correction, radiometric
calibration, and geometric calibration [45]. The dataset
includes 11 different land-cover categories. In this study,
2% of the labeled samples were randomly selected for
training. The number of samples are listed in Table IV.

B. Experimental Settings

To
posed

validate the feature extraction capabilities of the pro-
HI-MAFE algorithm, comparative experiments were

conducted with eight different methods. These included five
AutoFE algorithms and three DRL feature selection algo-
rithms. Among the different methods, the random method
generates new features by randomly applying transformations
to each original feature. AutoFeat [46] is a widely used
AutoFE toolkit in Python that constructs features using an
“expansion—reduction” framework. FETCH [36] is a DRL-

based

end-to-end AutoFE framework that can achieve a
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TABLE V
CLASSIFICATION RESULTS OF THE DIFFERENT METHODS WITH THE THREE METRICS ON THE DIFFERENT DATASETS
. RLSFR- MH- HI-

Dataset Metric DRLBS ov DRL Random AutoFeat NFS DIFER FETCH MAFE
OA (%) 88.50 88.48 89.28 91.97 93.04 92.07 91.84 93.56 93.64
Pavia AA (%) 87.87 88.09 89.07 91.92 92.17 9148 91.56 93.12 93.29
University Kafé’g “ 8455 8451 8560 8924 9072  89.40 89.05 9141  91.53
OA (%) 88.66 88.70 89.26 92.37 93.00 92.78 92.77 92.85 93.64
Houston AA (%) 90.48 90.51 91.00 93.63 94.34 9395 9397 94.05 94.80
2013 Eﬁ%%a 87.73 8778 8839 91.75 9243 9219 92.18 9227  93.12
OA (%) 90.66 90.48 90.80 92.74 91.21 91.59 93.08 92.96 93.34
. AA (%) 88.28 88.23 88.36 90.88 89.10 89.73  90.80 91.11 92.11

QingPu Kappa x —
lp(g)O 89.09 88.88 89.26 91.52 89.74 90.18 91.92 91.78 92.22

Asphalt
Meadows

Gravel

Trees

Metal sheets ¥
Bare Soil
Bitumen

Bricks

Shadows

Fig. 5. Visual classification maps of all compared methods on the Pavia University dataset using RF classifier. (a) Ground truth. (b) DRLBS. (c) RLSFR-cv.
(d) MH-DRL. (e) Random. (f) AutoFeat. (g) NFS. (h) DIFER. (i) FETCH. (j) HI-MAFE.

state-of-the-art performance. DIFER [47] introduces a dif-
ferentiable AutoFE method that utilizes an encoder—decoder
framework, converting features into function strings at each
step. NFS [35] is a DRL-based AutoFE method inspired
by neural architecture search (NAS), exploring the feature
space with an RNN controller and automating the feature
construction and selection process. Among the DRL feature
selection methods, DRLBS [11] was the first to transform the
feature selection problem of hyperspectral imagery into a DRL
problem. RLSFR-cv [12] explores the inherent relationships
between hyperspectral features by introducing two spectral
feature evaluation methods. MH-DRL [13] is based on a multi-

agent DRL-based approach, combined with hybrid teacher
guidance, to address the hyperspectral band selection problem.

The experiments were performed on a server equipped with
an Nvidia H800 GPU and an Inter! Xeon' Gold 6442Y pro-
cessor with 96 cores. The proposed method was implemented
using the PyTorch framework in Python.

In the experiments, all the methods were optimized using
fivefold cross-validation on the training set, and the final model
performance was evaluated on the test set. Three metrics
are employed here for the evaluation: overall accuracy (OA),

IRegistered trademark.
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Fig. 6. Correlation matrices of the original features and the features extracted by HI-MAFE on the different datasets. (a) Pavia University. (b) Houston 2013.

(c) QingPu.

average accuracy (AA), and the Kappa coefficient (Kappa).
The classification assessments were conducted using random
forest (RF). For the RF classifier, the number of decision
trees was set to 200. To ensure consistency, the same feature
operators were utilized across the five AutoFE algorithms, with
the maximum feature order set to 2. All the methods were
configured to use the default parameters whenever possible. To
reduce computational and memory burdens, certain parameters
for some methods were adjusted. Specifically, we set the
parallel sampling number for FETCH to 5 for each iteration.
In the initialization step of DIFER, we set the initial number
of randomly selected features to 128. For NFS and AutoFeat,
we applied RF to perform feature importance selection on the
original dataset, identifying the top 50 important features. All
the methods, including HI-MAFE, utilized the spatial features
in the same manner.

In HI-MAFE, we configured the training process for a total
of 400 epochs, with the first 100 epochs designated for the
generation step and the remaining 300 epochs for the selection
step. During the generation step, the learning rate was set to
0.0001, the discount factor to 0.95, the parallel sampling size
to 5, and the transformer parameters to dmodel = 128, fihead = 8.
In the selection step, the learning rate was adjusted to 0.001,
the discount factor was set to 0.999, the reward coefficient
for selecting new bands was set to 0.1, and the penalty
coefficient for selecting duplicate bands was set to —0.1. In
addition, the number of parallel environments was established
as 8.

C. Experimental Results

This section presents a detailed comparison of the OA,
mean accuracy, and Kappa coefficient of the various methods
across the three HSI datasets: Pavia University, Houston 2013,
and QingPu. Consistent with previous studies, we set the
final number of features to 30, 40, and 70, respectively,
for these datasets [13]. It is noteworthy that the random,
AutoFeat, NFS, DIFER, and FETCH methods do not output
a fixed number of features; instead, the final feature count is

adaptively determined by the algorithms. As shown in Table V,
the performance of the band selection methods is inferior to
that of the feature engineering algorithms. This discrepancy
arises because the band selection methods often eliminate a
substantial number of bands, leading to significant information
loss. Among the various band selection algorithms evaluated,
MH-DRL, which employs a hybrid teacher-guided multi-agent
DRL framework, provides agents with rich external knowl-
edge. This enhances the exploration process and improves
the agents’ autonomous learning capabilities, resulting in a
superior performance, compared to the other band selection
algorithms. The random method demonstrates a poor perfor-
mance, mainly because it relies entirely on randomly selecting
transformation functions, which weaken the stability of the
model’s prediction. AutoFeat uses an ‘“expansion—reduction”
strategy but encounters the issue of feature explosion, which
makes it less effective for high-dimensional hyperspectral
data that include hundreds to thousands of bands. Conse-
quently, its predictive performance is suboptimal. In contrast,
NFS constructs an RNN controller for each feature, allowing
for efficient parallel execution of transformations through a
robust search algorithm. This effectively addresses the feature
explosion issue, which is a key factor in its performance advan-
tage over AutoFeat. However, processing high-dimensional
data incurs substantial computational costs. To mitigate the
feature space, NFS first selects from the original features,
which unfortunately results in considerable information loss.
DIFER, which is the first differentiable AutoFE method,
incorporates a tree structure for better feature representation,
which enhances its performance, relative to the other baseline
methods. Nonetheless, DIFER evaluates the impact of indi-
vidual features without considering the overall performance
of the generated feature set. The previous NAS-like AutoFeat
frameworks operate with the data-unobserved paradigm, sig-
nificantly deviating from the approach taken by human experts.
In contrast, FETCH establishes a novel DRL-based AutoFE
framework, characterized by a fundamentally different data-
driven MDP setup that simulates human expertise, thereby
outperforming the other comparative methods. In addition, the
proposed HI-MAFE method exhibits a superior performance
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Fig. 7. Visualization of the bands employed by the proposed method on
(a) Pavia University dataset, (b) Houston 2013 dataset, and (c) QingPu dataset.
We also show the average spectral signature of each class.

across all the datasets, substantiating the effectiveness of the
proposed approach.

Furthermore, as illustrated in Fig. 5, the visual classification
results obtained from the Pavia University dataset demonstrate
that the proposed HI-MAFE method yields more accurate clas-
sification results, compared to its competitors. It is noteworthy
that bare soil and meadows are two categories within the Pavia
University dataset that are particularly prone to confusion.

D. Feature Quality Assessment

In this study, in addition to evaluating the feature extraction
results through classification outcomes, we also assessed the
feature quality based on the correlation among features and
their information entropy. The correlation coefficient serves as
a measure of the relationship between variables [48]; generally
speaking, a lower correlation among features indicates reduced

IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 63, 2025

TABLE VI

CORRELATION AND ENTROPY RESULTS OF HI-MAFE AND THE BASE
METHOD ON THE DIFFERENT DATASETS

Dataset Metric Base HI-MAFE
Pavia Correlation 0.5881 0.2793
University Entropy 11.2312 15.0229
Houston Correlation 0.7787 0.3662
2013 Entropy 13.0689 18.3265
QingPu Correlation 0.6053 0.5102
Entropy 11.4361 17.0853

information redundancy, suggesting improved effectiveness
of the feature extraction. Information entropy is a crucial
metric for quantifying the informational content of images
[49]. The entropy value of each feature reflects the amount
of information it contains, with higher entropy indicating
richer information content. Table VI presents the correlation
coeflicients and information entropy of HI-MAFE and the base
method (original features) across the various HSI datasets.
It can be observed that the information entropy increases
by 33.76%, 40.23%, and 49.40% across the three datasets,
respectively, while the correlation coefficients decrease by
52.51%, 52.97%, and 15.71%. These results indicate that the
extracted features exhibit low correlation and contain a sub-
stantial amount of information. Furthermore, Fig. 6 illustrates
the changes in the correlation coefficients before and after
feature extraction on the different datasets.

E. Analysis of the Employed Spectral Bands

To provide a clearer visualization of the features employed
by HI-MAFE, the usage of spectral bands across the three
different datasets is presented in Fig. 7. To prevent stacking
caused by an excessive number of bands, the final output
feature count was fixed at 10. In HSI data, adjacent bands
typically exhibit higher correlations, leading to information
redundancy. The figures reveal that HI-MAFE tends to favor
bands with lower correlation. Notably, in the spectral range
with higher information entropy, the distribution of the bands
selected by HI-MAFE is denser.

F. Sensitivity to the Numbers of Features

In this section, we describe how the impact of varying the
number of output features on the classification results was
investigated. For the QingPu dataset, the number of features
was restricted to the range of [5, 100]. For the Pavia University
and Houston 2013 datasets, the feature counts were limited
to [5, 50] and [5, 70], respectively. We present the OA for
the different feature counts in Fig. 8. It should be noted that
the AutoFE methods are unable to fix the number of output
features. Consequently, the number of features is determined
adaptively by the algorithm. To ensure the consistency and
reliability of the experimental outcomes, only the spectral
features were utilized in the experiments conducted for each
method. The experimental results demonstrate that the OA of
several of the methods exhibits a gradual increase with the
number of features, reaching a plateau after a certain number
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Fig. 8. Influence of the different numbers of features on (a) Pavia University dataset, (b) Houston 2013 dataset, and (c) QingPu dataset.

TABLE VII

TIME EFFICIENCY COMPARISON OF HI-MAFE WITH THE OTHER AUTOFE
METHODS ON THE DIFFERENT DATASETS

Execution Time(m)

Dataset HI-
AutoFeat  NFS ~ DIFER FETCH .0
Pavia 202.87 1097.56 252.13 7125  23.60
University
Houston 5,0 0 92404 29830 8337 28.99
2013
QingPu 14250 121629 686.01 209.03 45.72

of features. The OA of HI-MAFE consistently outperforms
that of the feature selection methods, as HI-MAFE is capable
of extracting more comprehensive feature information. In
addition, HI-MAFE requires a minimal number of features
to achieve a high level of accuracy. For example, on the
Houston 2013 dataset, HI-MAFE achieves a high accuracy
with a feature count of 10. Overall, HI-MAFE demonstrates a
superior performance and stability, achieving a high accuracy
with a smaller number of features.

G. Time Efficiency Comparison

This section presents a comparative analysis of the time
efficiency of the proposed method. Table VII displays the
total running times of the different AutoFE methods on
the aforementioned datasets. The results indicate that HI-
MAFE is significantly more efficient than AutoFeat, DIFER,
and FETCH. Among these methods, NFS builds an RNN
controller for each original feature to learn the optimal feature
transformations. During the training process, NFS uses RF
to evaluate the gain brought by each feature. Therefore, its
training speed is constrained by the efficiency of the evaluation
algorithm. AutoFeat applies all possible transformation
functions or randomly sampled transformations to the
original features, resulting in considerable time consumption.
The performance of the DIFER and FETCH algorithms is
significantly affected by the feature dimensionality, with their
runtime on the QingPu dataset being more than twice as
long as that on the Houston 2013 dataset. FETCH employs
single-agent DRL for feature extraction, which undermines
the overall performance of AutoFE. Compared to the

TABLE VIII
ABLATION EXPERIMENTS ON HI-MAFE WITH THE DIFFERENT DATASETS

. Components
Dataset Metric Gen Gent+Sel Spa Gen+Sel+Spa
Pavia OA(%) 92.83 92.65 67.92 93.64
University AA(%) 92.41 9233 6697 93.29
Kappax100 90.44 90.20 54.42 91.53
Houston OA(%) 9220 92.76 44.99 93.64
2013 AA(%) 93.25 93.74 45.72 94.80
Kappax100 91.56 92.16 40.51 93.12
OA(%) 93.14 9299 6791 93.34
QingPu  AA(%) 91.81 91.78 53.96 92.11
Kappax10091.99 91.81 62.67 92.22
suboptimal algorithms, the HI-MAFE method

demonstrates feature extraction efficiency improvements of
66.88%, 65.23%, and 78.13% across the three datasets,
respectively. These results indicate that the HI-MAFE
approach can effectively handle the high dimensionality of
hyperspectral data, exhibiting a superior performance in terms
of temporal efficiency.

H. Ablation Experiments on HI-MAFE

This section describes how we verified the effectiveness of
the generation step, selection step, and spatial features through
ablation experiments. Table VIII lists the classification results
for each component. The results demonstrate that, during the
generation step, the HI-MAFE method effectively extracts can-
didate spectral features while achieving a high accuracy. In the
selection step, it further reduces the feature redundancy while
maintaining the classification accuracy, and the incorporation
of spatial features enhances the overall performance of the
classification.

V. CONCLUSION

In this article, we have introduced a novel automatic feature
extraction algorithm for hyperspectral imagery, leveraging
MADRL to reduce the reliance on manually crafted SIs.
The model employs a heuristic “generation-selection” strategy
that emulates the decision-making process of experts, with
distinct DRL formulated for the generation and selection steps.
Moreover, to expedite exploration in the high-dimensional
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action space characteristic of hyperspectral data, a MADRL
algorithm is introduced. Comparative experiments with several
feature selection and AutoFE methods demonstrated that the
proposed approach outperforms the others in both extraction
efficiency and overall performance.

A primary limitation of the proposed HI-MAFE method lies
in its modular design. Future research will focus on developing

an

end-to-end network architecture to further enhance the

feature extraction process. In addition, the proposed method
has only been validated on airborne hyperspectral datasets.
Subsequent studies will consider evaluating the model’s appli-
cability and robustness across different platforms and sensor
types. Moreover, knowledge-based feature extraction methods
can effectively compensate for the shortcomings of data-driven
approaches. Therefore, a dual-driven feature learning strategy
that integrates both knowledge and data may represent an
important direction for future research.
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